Criterio de Euler

De Wikipedia, la enciclopedia libre

En teoría de números, concretamente en aritmética modular, el criterio de Euler es utilizado para calcular si un número entero x es un residuo cuadrático módulo un número primo. Su nombre se debe al matemático suizo Leonhard Euler.[1][2][3]

Enunciado[editar]

Sea p > 2 un número primo y a un número entero coprimo con p. Entonces a es un residuo cuadrático módulo p si y solo si

Como corolario de este teorema se obtiene que si a no es un residuo cuadrático módulo p entonces

Así, el criterio de Euler puede ser reformulado de manera más compacta usando el símbolo de Legendre:

Demostración[editar]

Supóngase que . Se sabe por el pequeño teorema de Fermat que si p es primo y es coprimo con a, es decir, p no divide al número a, entonces . Luego se tiene que

A la inversa, se supone que . Sea b un elemento primitivo módulo p. Entonces para algún i. Luego se tiene que

Como b es de orden p-1, debe darse el caso de que p-1 divide a i(p-1)/2. Por lo tanto, i es par, y las raíces cuadradas de a son .

Referencias[editar]

  1. Gauss, DA, Art. 106
  2. Dense, Joseph B.; Dence, Thomas P. (1999). «Theorem 6.4, Chap 6. Residues». Elements of the Theory of Numbers. Harcourt Academic Press. p. 197. ISBN 9780122091308. 
  3. Leonard Eugene Dickson, "History Of The Theory Of Numbers", vol 1, p 205, Chelsea Publishing 1952

Bibliografía[editar]

  • Tom M. Apostol (1976): Introduction to Analytic Number Theory, Springer-Verlag, New York. ISBN 0-387-90163-9, (Capítulo 9.2)

Enlaces externos[editar]